18.152 PROBLEM SET 5

due April 25th 9:30 am.
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. (a) Let $u: \mathbb{R} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=u_{x x} & x \in \mathbb{R}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Show that there exists some large constant T depending on R such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|u_{t}(x, t)\right|^{2} d x=\int_{\mathbb{R}}\left|u_{x}(x, t)\right|^{2} d x, \tag{1}
\end{equation*}
$$

holds for $t \geq T$.
(b) Give an example of a solution to the wave equation on the bounded domain $(x, t) \in[0, L] \times[0,+\infty)$ such that it has constant Dirichlet data and does not satisfies (1).
Hint: Use the d'Alembert formula.

Problem 2. Let $u: \mathbb{R}^{3} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \mathbb{R}^{3}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R}^{3},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Show that there exists some large constant C depending on $R, g, \nabla g, h$ such that

$$
|u(x, t)| \leq C / t
$$

holds for $t>0$.
Hint: Use the Kirchhoff's formula.

Problem 3. Let $u: \mathbb{R}^{6} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \mathbb{R}^{6}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R}^{6},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Establish a bound for $|u(x, t)|$ in terms of t, R, g, h and the first or higher order derivatives of g, h.
Hint: Use some energy.
Problem 4. Let $u: \mathbb{R}^{n} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \mathbb{R}^{n}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R}^{n},
\end{array}
$$

where g, h are smooth. Suppose that g, h are polynomials; for example, $g\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-2 x_{2} x_{3}+3$. Show that the solution $u(x, t)$ is also polynomial for each $t \geq 0$.

Hint: Use some energy.

